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IDENTIFICATION OF AN UNKNOWN CONDUCTIVITY BY MEANS OF MEASUREMENTS

AT THE BOUNDARY
Robert V. Kohn*

and

\

JU@_ a;fb:: _
ABSTRACT. W€ present a summary of results concerning the determina-
tion of an unknown conductivity by means of static measuiﬁgfnts at
the boundary. The main emphasis is on identifiability; only
briefly discuss the reconstruction problem. Some references are given
to related work for time dependent problems. <§—?-_____

Michael Vogelius*

INTRODUCTION. We study the following inverse problem: can one determine

unknown conductivity vy(x) inside a body I, by means of static measurements

the boundary? A. P. Calderén raised this question in (2];

seen as a natural extension of a problem analyzed by Cannon, Douglas and

it may

Jones in 1963 [3,4]. Despite some progress,many unsolved problems remain.

Our main goal here is to summarize what is known about identifiability; we
do this in sections 2 and 3, which are based mostly on [18]. A few of the
results presented - notably 2E and 3C - are previously unpublished. 1In
section 4, we touch on the reconstruction problem, given finitely many measure-
ments; and section 5 reviews the literature on some related problems. Poten-
tial applications include nondestructive testing and water resources management
(14,13], but these will not be discussed here.

Throughout, Q will be a bounded domain in Rr" » with unit normal v along
3 . The unknown conductivity y(x) may take real scalar or matrix values,

corresponding to an isotropic or anisotropic material, In the isotropic case

(1.1) Yy € L“(n), ess inf y > 0 ,

while in the anisotropic case

(1.2) Yy " Vg1 € @ , el? ¢ e, < algl?

for all x € Q0 and § € r" , with A > 0 ., We consider solutions of

1.3) Lyu a Vo(y(x)Vu) = 0 ;

in the context of heat conduction u represents temperature and yVu the heat

*
Research supported in part by Mathematical Sciences Resaarch Institute,
Berkeley, CA (RVK) and ONR contract N000Q14~77-C-0623 (MV).
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Robert V. Kohn and Michael Vogelius

flux; in the context of direct current electrical conduction u represents
voltage and YVu is the vector of current flow. The natural things to measure
at 90 are the Dirichlet data u|an and the Neumann data Y(x)Vu-v[an . We

. H1/2 ~-1/2

denote by PY : (3Q) - H (3Q) the operator which associates the former

to the latter,

Py¢ = qu-\)|aQ with LYu =0, u|an =4 ;

we ghall say that

P, =Py .
Y1 Y

Y1 and Yy give the same boundary measurements" if

2
Knowledge of PY yields the energy quadratic form
(1.4) Q (¢) = I (YVu,Vu)dx = J $P_¢ds ,
Y Q w Y
by Green's formula, where the rightmost integral represents the dual pairing
of Hl/z and H_I/Z . Conversely, QY determines PY by the polarization

identity; hence

"yl and vy, give the same boundary measurements” 1ff

Qy ) = QY2(¢) for each ¢ € ul/z(an) . The following variational charac-
1

terizations of QY are well-known:

(1.5) QY(¢) = min J (yVw,Vw)dx
Q

w € HL(Q)
w=¢ on 3fl

~Q (¢) = min (J (Y-lc,a)dx -ZJ ¢c-vds> .
Y o€LZ (RN 3
Veom=0
2. IDENTIFIABILITY -~ THE ISOTROPIC CASE. 1In one dimension, only the harmonic
mean of Yy can be detected by boundary measurement: it is an easy exercise

to show that

2A. For Q = (a,b) , Yy and Yy give the same boundary measurements iff

they have the same harmonic mean.

Fortunately, the situation is entirely different in dimension greater than one.

Cannon, Douglas, and Jones considered cylindrical domeins, with y con-~
stant along lines parallel to the axis, in 1963, They showed that such ¥y
are identifiable:

1

2,9 gomain in R"T,

2B [3). Suppose 0 = G x (a,b) , with G a bounded, C
a >0 . Then the elements of
r, = {y € 01‘0(5) : inf v > 0}

can be distinguished by means of boundary measurements.

Their procedure for reconstructing y 1is remarkably direct. Taking
(a,b) = (0,7) for simplicity, and writing x' = (xl.....xn_l) , let Lyu -0




Identification of an unknown conductivity 3

u=20 on G x {0,n}
u= g(x')sin x, on 3G x (0,7) ,
where g : 3% +R 1is any positive function. If

k(x') = y(x') f%i
o n xn-O

is measured, then
Yy = keexp(-w) ,

where w(x') solves
ntl Iw
) Fr (k ———-) =k on G
i,j=1 i
w=4{ng on 3G

Thus v(=') 1s determined for all x' , using a single choice of g .

The restriction that y be independent of x is, of course, crucial to
the preceeding analysis. One is not really finding vy "in the interior"”,
since it is determined by its values along the boundary. When the dependence
of y 1s unrestricted, one naturally obtains information at the boundary more
easily than in the interior. If everything is smooth, then y 1is determined
to infinite order at 38 .

2C [18]. Suppose that 3@ is smooth, aud that v,,v, € C (@) . If vy, and

Y, give the same boundary measurements, then

(2.1) &y, = 0%, on @

ail ax

k k
1
for all k= (k.,...,k ) > 0 , where DE iy cee (2) .
- = 1 n —_— 1 3xn

" The proof of 2C 1s local in character, but not constructive, For X € 3

with vn(xo) $ 0 , conasider the Dirichlet data

n
=~1 n-l
(x) = N 321 ¥ (N(xj-xo,j))

with corresponding solutions u§ ’

1 1
-0 -9, , L=1,2.
Lvi“n Nl TN

If v € c;ﬂl) has vanishing moments of order g M-1, then a version of
"St. Venant's principle" provides that

[rug ] s cv™, N+

for x € I bounded away from Xq -
If (2.1) fails, then (relabeling if necessary)

i
5
H

i A T
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4 Robert V. Kohn and Michael Vogelius

Y (x) = vy(x) > C dist (x,an)c

with £ 20 and C > 0, in a neighborhood of some ) € 30 ; it now follows
that QY1(¢N) > QYZ(¢N) provided M > nf/2 and N 1is sufficiently large, a

I ——

contradiction to the fact that and Yy give the same boundary measure-

Y
1
ments. Details may be found in [18]; see also 3C below. ;

An immediate corollary of 2C 1is this:

s

2D : For a smoothly bounded domain Q cR", 032, the elements of

r, = {restrictions to 2 of positive, real i
analytic functions defined in a neighborhood L
of @} i

can be distinguished by boundary measurements.

The analogue of 2D with "analytic" replaced by "piecewise analytic" is

open. We are encouraged, however, by the following example,

2E. Let Q be the unit disc in IRZ , with polar coordinates (r,8) , and

— s | et — ——

denote by T, the set of conductivities
Y r<r
v(r,0) = { 0 0
1 rgsrc<l

with 0 < L) <1 and Yo 2 positive constant. Then the elements of F3 can

be distinguished by boundary measurements.

To prove 2E , consider v,¥ € P3 , with ¥ corresponding to ?0 . fo 5 we
shall show that QY(sin Ne) # Q;(sin N8) for all sufficiently large N, unless
y=vy . If Eo =T, this follows instantly, since either ¥ <y or ¥ >y
and consequently either Q;(sin NO) < QY(sin N8) or Q;(sin N8) > QY(sin NO) ,
provided 90 4 Yo -

R SR AT T P 9 ETI A TP £ % "

ErrorTa ey

Relabeling if necessary, we assume that Eo <ty . For N2 0, let wuy

solve " h

L =0 = gin NO ,
v N ' u“'an

and notice that for r < T, ?
2 |

(2.2) = c,tNsin N6 , ¢ =
' L N N rgu(l-yo)+(yo+1)

In case v, > 1, (2.2) implies that
0

- 2 2
2.3) J Yol Tu,|€dx < I (va-1) | Yu | “dx
r<i, o' 0 UN

£, <r<r ,
0 0 !

for sufficiently large N, vhence

P T O




Identification of an unknown conductivity 5

I ?IVuNIde = J Y IVuN|2dx + I IVuNIde + I | 9u |2dx
Q r<r 0 T.<r<r r.<r<l N
0 0 0 0
2 2
< IE rer yoquNf dx + [r rel fVuNl dx ,
0 0 0
so
- 2 2
(2.4) f YquN[ dx < f Y'VUNI dx = QY(sin N8) .
Q Q

It follows, using (1.5), that Q;(sin N@) < QY(sin Ne) .

Next, suppose that Yo <1 . In this case, a similar argument gives
2.5) I §—1|0N[2dx < J Y-1|0N|2dx
Q Q

with oy " YVUN , and N sufficiently large. Using the dual variational
principle (1.6), we conclude that Q;(sin Ne) > QY(sin Ne) .

3. IDENTIFIABILITY - THE ANISOTROPIC CASE. In the anisotropic case, one can
not expect to recover the full matrix Yij , as the following two examples

demonstrate.

3A. Let @ cr" ,m21, and let vy satisfy (1.2). For any C1 diffeomor-

phism ¢ : Q -+ Q with
3.1) o(x) = x, DO¢(x) = I for all x €230 ,
et

Y@ (x)) = | der (Da(x))] 2o (x) S oy (x) DO (x) .

Then all elements of

r, = {yo : ¢ satisfies (3.1)}
give the same boundary measurements.
We owe this remark to L. Tartar. If LY“ =0, then L ® u¢ =0 , with

)

o (x) = uesl

(x) ;
by (3.1), u° =u on YQ'Vuo- y*Vu on 3

3B [25]. Let @ be the unit disc in , with polar coordinates (r,8) .

. ———  e—— ep————  a—

For any function a(r) , let

o a cosze + a-lsinze (a-a-l)sin fecos 9
Yy = - -
(a-a l)sin 0ecos 0 a sinze + a 1coc2 ]
Then all elements of

g = (v* : a € L.(O,l) , ess inf a > 0)
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give the same boundary measurements.

Indeed,
2

3 9 3
. - > Y+ < .
T LYQ T (ra(r) 3r> ra(r) 392 ?

note that when a = 1 this is just r times the Laplacian. For N € Z , the

solution of
iNe
L =0 = e
ol ’ uNlaQ
, with v(1) = 1 and

3 N2

v
™ (tu(r) -3-1_') ) v=20.

has the form v(r)e1Ne

This implies that

T 4s T ds
v(r) = c; exp (lNlL m) * ey exp (‘IN‘L sa(s)) ’
iNe

with ¢y + ¢, =1. Since v(r)e € Hl(Q) s C

2
Neumann data associated to Uy is

By must equal zero; hence the

3
tuuN-vl -a—a‘;N—- lNleiNe s
=1

{eiNe} is dense in Hl/z(an) s

so each ya € P5 gives the same boundary measurements.

regardless of the choice of o . The span of

What can one detect, in the anisotropic case? The natural analogue of 2C
is this: 1if (n-1) eigenvalues and eigenvectors of y are known, the last

eigenvalue can be distinguished by boundary measurements.

3C. Let v,y be two symmetric, positive definite matrices with entries in

L7(R) , and let {Ai},{ii} and {ei},{éi} be the corresponding eigenvalues

and eigenvectors. For X, €30 , let B be a neighborhood of X, Ielative
to @, and suppose that

(3.2) Y,y €C(B), and 92NB is C ;
. - o - X B N < < - H

(3.3) ej ej,xj xjgx_ 1 ¢3¢l
(3.4) en(xo)-v(xo) £ 0
(3.5) Q (#) = Q;(4) for every o ¢ /2 (an)

with supp ¢ € BN 30 .
Then

k k=

(3.6) DRA_(xg) = DA (x,)

for any k = (k;,...,k) 2 0.
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We sketch the proof. For a fixed =z € 3Q near X5 » let {¢N};_l be a

sequence of functions on 3R such that

(3.7 supp 4y + {z}
k
(3.8) ”°ul|k,annn s CN°,for all k > - M

where the norms are standard Sobolev norms based on L2 s the existence of

such a sequence may be deduced from [18], for any fixed M > 0. If Uy solves
LyuN =0 in Q , uy = ¢N on 3R ,
then (3.7)-(3.9) imply

(3.10) oyl oo < oM

for all neighborhoods U of z (c.f. Lemma 2 of {18]). Condition (3.4) gives
in a sufficiently small neighborhood U of =z

(3.11) J |w|2ds sC J [en.lezdx
unag U
for any w € H'(Q) with w=0 in Q\U; using this and (3.7)-(3.9), one
obtainsg
£ 2 - (n+l+e)d
(3.12) JU 0 len VuNI dx 3 Cp, N , CZ,e >0

for any £ 20, ¢ >0, with p(x) = dist (x,30) , provided M > (n+l)&/2
(cf. Lemma 3 of [18]).
3 \K 3 \K.
In order to prove (3.6) it is sufficient to verify that (5;) Y= (3;) Y
in a 3@ - neighborhood of Xy for any k > 0 . We prove this by contradic-
tion, using (3.10) and (3.12). 1If it fails, we may assume gwitching y and
Y if necessary) that there exists a z near X, and a neighborhood U S B of

z such that
(3.13) Xn(x) - Xn(x) 2 Cp(x)'e for x €y ,
with C>0 , £ 30 . Then
(YYu,,%u )dx > f (YPu,,%u,)dx 3 J (YPu, Vu, ) dx
| maprspen s [ rmugrapan s | Go ey
L 2
+C Ljo len-VuNI dx ,
using (3.3) and (3.13). If M > (n+l){/2, then (3.10) and (3.12) show that
L 2 -
c I o le +Vu. | dx > j (YVu,,%u )dx
g ' Uy o\ YN Uy

for large N. Hence, using (1.5),

QY(ON) - IQ(YV“N’V“N)d“ > In(§VuN,VuN)dx 3 Q;(ON) H

This contradicts (3.5), and the proof is complete.

TN S Sy e e T
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8 Robert V. Kohn and Michael Vogelius

The preceding argument used (3.4) to justify (3.11). The following
example suggests that (3.4) may be dispensable.

denote the family of conduc-

3 (4]. For 2 = (a,b) x (c,d) CR® , let T
tivities

6

1 0
y(x) = R
0 a(xz)

for a € ct with inf a > 0 . Then the elements of T can be distinguished

by boundary measurements. More specifically, if Yy € r6 , 1 =1,2 and

1 2
Yqu v YzVu v at x b
where ui is the sglution to
Ly =0 in @
i

ui = 0 at X = a,b

{ X,-a
u = gin {7 b= ) at Xy = c,d

then
Yy FYy .

4. RECONSTRUCTION. Setting agside the question of identifiability, how might
one estimate y in practice? A straightforward approach is the following:
let V be a finite-dimensional subspace of Bl(Q) ; for wj eV,

du
2(aQ) , and measure y 3 where u, solves

3

lgsjsm, set ¢, =w € Hl/

3 A Py

=0 in Q@ , u -9
If G 1is a finite-parameter family of possible conductivities, and y € G ,

let GJ € U be the solution to the Galerkin equation

L
vy

I (93,,94)dx = 0 for all ¢ €V 1 A ()
Q
u 6, on 3N .
37 %
Now assume furthermore that V and G are selected so that ¥ %% € H-llz(aﬂ)
whenever w € V and ¥y € G, and choose Y to minimize

m Ju du
(6.1) I = J Ity 2
Z v avll H.llz(aﬂ)

among sll y € G .

T e A —— + WMt < o - wam et . e o o o [




Identification of an unknown conductivity 9

A variation of this method, and its finite-difference analogue, is studied

by Falk in [11), for operators of the form
- yu" + c(x)u = £(x) 0 <x<1
c,f known; vy > 0 constant

in one dimension. He takes G = R; , and uses just one measurement (m=l) at
one point on the boundary (x=0), so that the functional = 0 for some Yy ; and
he estimates how |{~y| depends on the choice of V .

The minimization of (4.1) has apparently not been studied in higher
dimensions. There is, however, a large literature on parameter identification,
much of which is relevant: see, for example, [10,19,22]. In other problems
where identificability and well-posedness are known, one can often prove the
convergence of such a procedure [l1]. And in some cases, even identifiability
can be proved using an approximation algorithm [20].

Calderdn takes a completely different approach to the reconstruction
problem in [2], for the scalar case with & = “Y-lH o sufficiently small. He

shows that the Fourler transform of y (extended b% zero off Q) has the form
Y(€) = £(8) + R(®) ,
where f(£) can be determined by boundary measurements, and
IR(E)} s C-Gz-exp(n'lsl-diam(ﬁ))

Thus boundary measurements suffice to approximate y(§) well at low frequercies,
if § 1s small. For any fixed ¢ € r" , measuring f(£, requires the Neumann
data from just one solution of L u = 0 , corresponding to Dirichlet conditioms

exp[m(ig+n)+x] , with n €R" , ne =0, |n] = |g] .

5. RELATED WORK. The parabolic analogue of our problem is to determine
vy = y(x,t) , given overdetermined boundary data for solutions of

du
5C Ve (yYu) 0]

on a space-~time cylinder @ x (0,T) . This problem h»s been studied extensive-
ly in space-dimension one, both as to the identifiability of y and as to its
numerical approximation: see [6] for y = constant, (5,9,15,16] for vy = v(t) ,
and [17,21,26]) for v = y(x) . We know of no results in space dimension
greater than one for spatially varying vy .

An interesting nonlinear analogue is obtained by letting y depend on u,
so that the equation becomes V+(y(x,u)Vu) = 0 . The case y = y(u) has been
studied in [7), and a related parabolic problem is treated in [8).

Many authors have studied the reconstruction of an unknown Y(x) , given
knowledge of a single function u everywhere on  , satisfying V-(yVu) = 0 .
This problem is of particular interest for studying ground-water flow through
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porous rock. Identifiability 1s analyzed in (24], and the convergence of

numerical schemes are studied in [23,12]. Applications and other numerical

methods have been discussed in a dozen or so articles in Water Resources !

Research over the last ten years, of which [13,27] are examples.
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